51 research outputs found

    Diseño de una Unidad de Detección del ritmo cardiaco humano para dispositivos médicos

    Get PDF
    Proyecto de Graduación (Licenciatura en Ingeniería Electrónica). Instituto Tecnológico de Costa Rica. Escuela de Ingeniería Electrónica, 2012.In this report was documented the development of a cardiac rhythm Detection Unit for medic devices. With the help of the Dr. Alfonso Chacón, the M.Sc. Roberto Pereira and the Dr. Alfredo Arnaud, a base circuit capable of detecting the cardiac pulses was designed. For the solution, low-power Gm-C circuits and transistor fragmentation technics were implemented as strategies for the design. Afterwards, a computerized optimization tool was employed to improve its electrical properties. In the present document you will find all the information related to the project development, from the theoretical fundaments to the design, the tests and the results obtained in simulators

    An affordable post-silicon testing framework applied to a RISC-V based microcontroller

    Get PDF
    The RISC-V architecture is a very attractive option for developing application specific systems needing an affordable yet efficient central processing unit. Post-silicon validation on RISC-V applications has been done in industry for a while, however documentation is scarce. This paper proposes a practical low-cost post-silicon testing framework applied to a RISC-V RV32I based microcontroller. The framework uses FPGA-based emulation as a cornerstone to test the microcontroller before and after its fabrication. The platform only requires a handful of elements like the FPGA, a PC, the fabricated chip and some discrete components, without losing the capacity to functionally validate the design under test and save development testing time by using a re-utilize philosophy.Agencia Nacional de Investigación e Innovació

    A compact functional verification flow for a RISC-V 321 based core

    Get PDF
    The structure of a functional verification flow used for the design of a RISC-V core is presented. The paper offers a guide on the test-planning used and details of the flow architecture, showing how to integrate the Universal Verification Methodology with the required, reference models, while implementing key futures in standard verification environments, such as testing regressions and code and structural coverage. The designed flow is compact yet efficient, making it affordable for small design teams, without requiring extra investment other than the already necessary licenses for RTL synthesis and the eventual fabrication of the chip.Agencia Nacional de Investigación e Innovació

    Fault-Tolerant Circuits and Interconnects for Biomedical Implantable Devices

    Get PDF
    Proyecto de Investigación (Código 1360014) Instituto Tecnológico de Costa Rica. Vicerrectoría de Investigación y Extensión (VIE). Escuela de Ingeniería Electrónica, 2020Los dispositivos médicos implantables (IMDs) son sistemas críticos para la seguridad con requerimientos de potencia muy bajos, los cuales se utilizan para el tratamiento a largo plazo de diferentes condiciones médicas. IMDs utilizan un número de componentes cada vez más elevado (sensores, actuadores, procesadores, bloques de memoria), que tienen que comunicarse entre ellos en un Sistema en Chip (SoC). En este proyecto, diferentes tipos de interconexiones (punto a punto, bus, red en chip) fueron evaluadas considerando su tolerancia a fallas, consumo de potencia y capacidades de comunicación. Como parte de los productos se desarrolló una base de datos escalable sobre sistemas médicos implantables reportados en la literatura hasta el año 2018, con el fin de conocer el estado del arte y las tendencias sobre la incorporación de sistemas electrónicos en este tipo de solución. Basado en este estudio inicial, se procedió a proponer un marco de trabajo de evaluación de interconexiones, el que incorpora un generador de topologías y el flujo de diseño para evaluar estas topologías en términos de potencia y tolerancia a fallas a nivel de simulación, junto con la propuesta de una métrica para comparar diferentes arquitecturas a nivel de pre-síntesis (previo a la consolidación del diseño). Por último, un diseño e implementación a nivel de circuito integrado (IC) de una solución de interconexiones ajustada a IMDs se incorporó en el diseño de un microprocesador a la medida. Este proyecto se desarrolló en el marco de la cooperación con el Centro Médico Erasmus (Erasmus MC) en los Países Bajos y la Universidad Católica del Uruguay

    A RISC-V based medical implantable SOC for high voltage a current tissue stimulus

    Get PDF
    A RISC-V based System on Chip (SoC) for high voltage and current tissue stimulus, targeting implantable medical devices, is presented. The circuit is designed in a 0.18μm HV-CMOS process, including the RISC-V 32RVI based microcontroller core, called Siwa —which includes SPI, UART and GPIO interfaces, a packet-based bus and memory controller, and 8kB SRAM—, combined with several biological tissue stimulus and sensing circuits. The complete test chip (analog+RISC-V) occupies a 5mm2 area but only 0.82mm2 correspond to the RISCV micro-controller, which operates up to 20MHz, with average energy needs of less than 48 pJ/cycle (3pJ STD), and for which several reliability and safety issues were considered.Agencia Nacional de Investigación e Innovació

    Siwa: A custom RISC-V based system on chip (SOC) for low power medical applications

    Get PDF
    This work introduces the development of Siwa, a RISC-V RV32I 32-bit based core, intended as a flexible control platform for highly integrated implantable biomedical applications, and implemented on a commercial 0.18 m high voltage (HV) CMOS technology. Simulations show that Siwa can outperform commercial micro-controllers commonly used in the medical industry as control units for implantable devices, with energy requirements below the 50 pJ per clock cycle.Agencia Nacional de Investigación e Innovació

    Siwa: a RISC-V RV32I based micro-controller for implantable medical applications

    Get PDF
    The design of Siwa1, a compact low power custom system on chip (SoC), targeted for implantable/wearable applications, is reported in this paper. Siwa is based on a RISC-V RV32I architecture. It has a centrally controlled non-pipelined structure, and it includes a control interface for an integrated sensing and stimulation device for biological tissues as well as standard communication interfaces. Siwa was developed from scratch using System Verilog, and implemented in a 180nm CMOS technology; Siwa includes a latch based register file c apable to read and write in one clock cycle with an area 30% smaller and a power consumption 25% lower with respect to an equivalent flip flop implementation; also, it has an estimated average power consumption of 70μW (48pJ/cycle) which is comparable to other micro-controllers commonly used in IMD applications.Agencia Nacional de Investigación e Innovació

    Clinical phenotypes and prognosis of dilated cardiomyopathy caused by truncating variants in the TTN Gene.

    Get PDF
    Background: Truncating variants in the TTN gene (TTNtv) are the commonest cause of heritable dilated cardiomyopathy. This study aimed to study the phenotypes and outcomes of TTNtv carriers. Methods: Five hundred thirty-seven individuals (61% men; 317 probands) with TTNtv were recruited in 14 centers (372 [69%] with baseline left ventricular systolic dysfunction [LVSD]). Baseline and longitudinal clinical data were obtained. The primary end point was a composite of malignant ventricular arrhythmia and end-stage heart failure. The secondary end point was left ventricular reverse remodeling (left ventricular ejection fraction increase by ≥10% or normalization to ≥50%). Results: Median follow-up was 49 (18–105) months. Men developed LVSD more frequently and earlier than women (45±14 versus 49±16 years, respectively; P=0.04). By final evaluation, 31%, 45%, and 56% had atrial fibrillation, frequent ventricular ectopy, and nonsustained ventricular tachycardia, respectively. Seventy-six (14.2%) individuals reached the primary end point (52 [68%] end-stage heart failure events, 24 [32%] malignant ventricular arrhythmia events). Malignant ventricular arrhythmia end points most commonly occurred in patients with severe LVSD. Male sex (hazard ratio, 1.89 [95% CI, 1.04–3.44]; P=0.04) and left ventricular ejection fraction (per 10% decrement from left ventricular ejection fraction, 50%; hazard ratio, 1.63 [95% CI, 1.30–2.04]; P<0.001) were independent predictors of the primary end point. Two hundred seven of 300 (69%) patients with LVSD had evidence of left ventricular reverse remodeling. In a subgroup of 29 of 74 (39%) patients with initial left ventricular reverse remodeling, there was a subsequent left ventricular ejection fraction decrement. TTNtv location was not associated with statistically significant differences in baseline clinical characteristics, left ventricular reverse remodeling, or outcomes on multivariable analysis (P=0.07). Conclusions: TTNtv is characterized by frequent arrhythmia, but malignant ventricular arrhythmias are most commonly associated with severe LVSD. Male sex and LVSD are independent predictors of outcomes. Mutation location does not impact clinical phenotype or outcomes.pre-print1,66 M

    Natural History of MYH7-Related Dilated Cardiomyopathy

    Full text link
    BACKGROUND Variants in myosin heavy chain 7 (MYH7) are responsible for disease in 1% to 5% of patients with dilated cardiomyopathy (DCM); however, the clinical characteristics and natural history of MYH7-related DCM are poorly described. OBJECTIVES We sought to determine the phenotype and prognosis of MYH7-related DCM. We also evaluated the influence of variant location on phenotypic expression. METHODS We studied clinical data from 147 individuals with DCM-causing MYH7 variants (47.6% female; 35.6 +/- 19.2 years) recruited from 29 international centers. RESULTS At initial evaluation, 106 (72.1%) patients had DCM (left ventricular ejection fraction: 34.5% +/- 11.7%). Median follow-up was 4.5 years (IQR: 1.7-8.0 years), and 23.7% of carriers who were initially phenotype-negative developed DCM. Phenotypic expression by 40 and 60 years was 46% and 88%, respectively, with 18 patients (16%) first diagnosed at <18 years of age. Thirty-six percent of patients with DCM met imaging criteria for LV noncompaction. During follow-up, 28% showed left ventricular reverse remodeling. Incidence of adverse cardiac events among patients with DCM at 5 years was 11.6%, with 5 (4.6%) deaths caused by end-stage heart failure (ESHF) and 5 patients (4.6%) requiring heart transplantation. The major ventricular arrhythmia rate was low (1.0% and 2.1% at 5 years in patients with DCM and in those with LVEF of <= 35%, respectively). ESHF and major ventricular arrhythmia were significantly lower compared with LMNA-related DCM and similar to DCM caused by TTN truncating variants. CONCLUSIONS MYH7-related DCM is characterized by early age of onset, high phenotypic expression, low left ventricular reverse remodeling, and frequent progression to ESHF. Heart failure complications predominate over ventricular arrhythmias, which are rare. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation
    corecore